

2024 CCHS Network Family Conference June 27, 2024

Vents, Stomas, and Masks, Oh My!

Ajay Kasi, M.D. Associate Professor of Pediatrics Div. of Pediatric Pulmonology Emory University, Children's Healthcare of Atlanta Email: ajay.kasi@emory.edu

No Conflicts of Interest to Disclose

Learning objectives:

- Discuss modalities of ventilatory support in CCHS
- Discuss the advantages and disadvantages of different modalities of assisted ventilation
- Describe pathways for tracheostomy decannulation to mask ventilation and diaphragm pacing
- Review the timing and technique of closure of the tracheostomy stoma

Respiratory abnormalities in CCHS

- Hypoventilation is the hallmark of CCHS
- Hypoventilation is worse during sleep but may also be present during wakefulness
- Absent subjective or objective responses to hypoxia or hypercapnia
- Abnormal or absent arousal responses to hypoxemia
- Signs of respiratory distress such as tachypnea, retractions & nasal flaring are absent in CCHS

Weese-Mayer, D.E., et al. Amer. J. Resp. Crit. Care Med., 181: 626-644, 2010 Kasi, A.S., et al. Pediatric Health Med Ther 2016:7 99-107

PHOX2B gene and hypoventilation

- PHOX2B genotype-phenotype correlation for severity of hypoventilation
- The duration of assisted ventilation per day generally depends on the PHOX2B genotype
- Ventilator requirement may range between sleeponly to full-time dependence

Weese-Mayer, D.E., et al. Amer. J. Resp. Crit. Care Med., 181: 626-644, 2010 Trang H et al (2020). Orphanet J Rare Dis 15:252.

Treatment of CCHS

- Assisted ventilation whenever CCHS patients hypoventilate
 - PHOX2B 20/24 and 20/25 PARM usually require ventilatory support only during sleep
 - PHOX2B 20/27 or higher & NPARM usually require full-time ventilatory support awake and asleep
 - Require assisted ventilation throughout life

Ventilatory Support in CCHS

- Positive pressure ventilation via tracheostomy
- Noninvasive positive pressure (mask) ventilation
- Diaphragm pacing (DP)
- Negative pressure ventilation
- CCHS patients are relatively unstable in the first 2-4 years of life, so ventilation via trach recommended initially.
- Consider early DP awake for full-time ventilator dependent patients.
- If ventilator dependent only during sleep and stable, consider mask ventilation ~5-6 years of age.

Weese-Mayer, D.E., et al. Amer. J. Resp. Crit. Care Med., 181: 626-644, 2010 6

Home Ventilation in CCHS

- Ventilators adjusted to fully meet the ventilatory demands
- Goal P_{ETCO2} 35-40 mm Hg, SpO2 ≥ 95%
- Settings ideally titrated during sleep study
- Monitor with continuous pulse oximetry and P_{ETCO2} during sleep
- The modality and changes to alternative modes of ventilation are individualized to each patient based on age, duration of ventilatory requirement, and riskbenefits of different forms of ventilation

Weese-Mayer, D.E., et al. Amer. J. Resp. Crit. Care Med., 181: 626-644, 2010 Trang H et al (2020). Orphanet J Rare Dis 15:252

Positive Pressure Ventilation via Tracheostomy

- Recommended during infancy to optimize oxygenation and neurodevelopment
- Pressure control mode preferred
- Should include age-appropriate respiratory rate setting
- Visual and audible ventilator alarms recommended
- 2nd ventilator setting could be programmed for use during illness
- Relatively smaller and uncuffed trach tubes preferred
- Periodic evaluation of airway and tracheostomy size

Ventilator Sprint Weaning

- During early infancy, full time ventilation is provided
- Later in infancy or childhood, children may develop the ability to breathe spontaneously while awake
- Ventilator sprint weaning: brief disconnection (30-60 min) of ventilator while awake with pulse oximetry and CO₂ monitoring in-hospital
- If tolerated, a sprint weaning progression plan is provided to gradually increase time off the ventilator while awake with pulse oximetry and CO₂ monitoring
- Close medical follow up

Positive Pressure Ventilation via Tracheostomy

Advantages	Disadvantages
 Effective during baseline health and illness Provides continuous prolonged ventilation Airway is secured, prevents obstructive apneas Facilitates suctioning of secretions Can be used in all age groups Newer, smaller ventilators with longer battery life 	 Requires tracheostomy Increased burden of care (trach care, suctioning) Increased cost Risk of speech delay and swallowing problems Trach-related complications: infections, bleeding, granuloma

Noninvasive (Mask) Ventilation

Indications:

- For patients with late-onset CCHS
- For patients with tracheostomy requiring sleeponly ventilation for tracheostomy decannulation
- Not generally recommended in infants and young children
- BPAP most often used
- BPAP ST or T modes should be used (has respiratory rate)
- BPAP S mode and CPAP modes should not be used
- Use home ventilator instead of BPAP device

11

Noninvasive (Mask) Ventilation

Careful mask selection, a well-fitting headgear and mask acclimation are important for adequate mask adaptation in children.

M.L. Castro-Codesal. Paediatr Respir Rev 32 (2019) 66–72 Amin R. Pediatr Pulmonol 2016 Apr;51(4):335-48

12

Noninvasive ventilation

- Eligible patients for mask ventilation seeking tracheostomy decannulation:
 - Age ≥6 years, cooperative
 - Requires sleep-only ventilation
 - Does not require full-time ventilation with illness
 - Stable without frequent admissions
- BPAP settings should be titrated during sleep study
 - Goal PtcCO2 35-40 mm Hg; SpO2≥ 95%

NPPV Titration Task Force of the American Academy of Sleep Medicine. *J Clin Sleep Med* 2010;6(5):491-509

13

Transition from tracheostomy to NPPV

Kasi et al. Journal of Multidisciplinary Healthcare 2022:15 455–469

Noninvasive (Mask) Ventilation

Advantages	Disadvantages
 No tracheostomy Relatively shorter training for family compared to tracheostomy Possibility of trach decannulation 	 Airway is not secured Limited mask options in children; periodic re-fitting Difficult to use for > 14-16 hours per day May require temporary intubation during illness Risk of facial deformity with prolonged use Potential discomfort, pressure sores, aspiration

Trang H et al (2020). Orphanet J Rare Dis 15:252.

Diaphragm Pacing

- Diaphragm pacing is a type of ventilator, which uses the patient's own diaphragm as the ventilator pump.
- Tracheostomy may be decannulated in some patients requiring ventilation only during sleep.

Diaphragm Pacing

- Electrical stimulation of the phrenic nerve causes diaphragm contraction.
- Normal intact phrenic nerve is required.
- Normal diaphragm muscle is required.

Implanted Diaphragm Pacing Equipment

Phrenic Nerve Electrode Lead Wire Avery Biomedical Devices, Inc.

Diaphragm Pacer I-110A Receiver Avery Biomedical Devices, Inc.

Monopolar Phrenic Nerve Electrode. Avery Biomedical Devices, Inc.

Chen, M.L., et al. Expert Rev. Med. Devices, 2: 577-585, 2005.

Diaphragm Pacer

Image from: Avery Biomedical Devices

Diaphragm Pacer Surgery

- Deflation of each lung
- Placement of the electrode on the phrenic nerve
- Securing the electrode to the tissue
- Testing the DP equipment
 intraoperatively
- Implantation of the receiver and connecting it to the electrode lead wire
- Repeating the same steps on the other side

Shaul, D.B., et al. J. Pediatr. Surg., 37: 974-978, 2002 20

Pacing Timeline

Time (weeks)	Procedure	
0	Surgical implantation	
6-8	Initiate Pacing (1-2 hours/day)	
12-16	Increase Pacing Time (muscle training)	

Chen, M.L., et al. Expert Rev. Med. Devices, 2: 577-585, 2005.

Children's Healthcare of Atlanta | Emory University

Initiating Pacing

- Usually can start pacing at 1 2 hours per day
- Monitor ventilation using pulse oximeter and P_{ET}co₂
- Begin with lowest setting on each side and increase until contraction palpable
- Increase tidal volume setting until a reasonable contraction is observed

Initiating Pacing

- Shoulder pain means tidal volume setting is too high
- Increase pacing time by 30 60 minutes per week
- Usually takes 3-months to train for full pacing
- Continuous pacing is not usually possible
- Limited to 12 14 hours/day

Diaphragm Pacing: Eligible Patients

- In patients requiring full-time ventilation
 - DP during the day
 - Ventilator via trach during sleep
- In patients requiring ventilator only during sleep
 - Age ≥ 4 years
 - Minimal or no lung disease
 - Not requiring full-time ventilation with illness
 - No obesity

Chen, M.L., et al. *Expert Rev. Med. Devices, 2:* 577-585, 2005 Diep B et al. *Respiration* 2015;89(6):534–538

Transition from Trach to Pacing

Kasi et al. Journal of Multidisciplinary Healthcare 2022:15 455–469

Transition from Trach to Pacing

- If oxygen saturation < 94% and/or P_{ET}co₂ > 45 on overnight sleep study with DP and capped trach:
 - Obstructive apnea is usually the problem
 - Adjust pacer settings
 - Consider adenotonsillectomy, sleep endoscopy

Remmers, J.E., et al. Clin. Chest Med., 1: 57-71, 1980.

Goals of Diaphragm Pacing

- Ventilator dependent only during sleep:
 - To potentially remove the tracheostomy

- Full-time ventilator dependent:
 - To improve mobility while awake
 - Improves quality of life, primarily because of its portability

Diaphragm Pacing

Advantages	Disadvantages	
 Improves mobility Possibility of trach decannulation No negative impact on speech or swallowing or facial growth 	 Requires surgery Can cause obstructive sleep apnea May require additional form of ventilation during illness Management in specialized CCHS centers Limited to 12-14 hours per day 	

Outcomes: Single-center study, n=30

- At diagnosis, most patients (80%) required full-time ventilation
- Median age of transition from full-time to sleep-only AV was 9 months (IQR 6-14 months)
- During respiratory infections, several young children who were weaned off ventilator during wakefulness required continuous ventilation
 Table 3. Comparison of assisted ventilation modalities.
- Median age at trach decannulation (n=9/14) was 11.2 years (IQR 5.9-15.7 yrs)

AV MODALITY	AT DIAGNOSIS, N (%)	CURRENT, N (%)
PPV-T	28 (93%)	19 (63%)
NPPV	0 (0%)	9 (30%)
Diaphragm pacing ^a	0 (0%)	3 (10%)
Oxygen	2 (6.7%)	0 (0%)

Tracheostomy stomas

- When trach stoma does not close after trach tube removal - Tracheocutaneous fistula – connects trachea to skin
- Less likely to spontaneously close based on longer duration of tracheostomy (>12 mo)
- Risks: secretions, skin irritation, infection, may affect speech
- Ideal timing: 3-6 months after trach decannulation

Tracheocutaneous fistula

- 2 surgical techniques for closure
 - Excision of fistula with primary closure in layers
 - Excision of fistula with healing
- Both techniques had similar success rate >90%; no difference in post-op complications
- If using mask ventilation, stoma may need to be covered with gauze and tape until the stoma is closed

Stern Y. Ann Otol Rhinol Laryngol. 1999 Sep;108(9):880-3 Lewis S. et al. Laryngoscope, 127:241–246, 2017

THANK YOU!

ajay.kasi@emory.edu